Hi! I’m heheHwang

1
2
from math import gcd

\[\begin{align} \mathcal{L}_r &= \frac{1}{N_r}\sum^{N_r}_{i=1} \left| \alpha \frac{\partial^2 f(x, t, h_1, h_2)}{\partial x^2} - \frac{\partial f(x, t, h_1, h_2)}{\partial t} \; \right|^2 \\[2ex] \mathcal{L}_b &= \frac{1}{N_b}\sum^{N_b}_{i=1} \left| -(T_{\infty}(t) - f(x_{b}, t, h_1, h_2)) + \left. \frac{k}{h_1} \frac{\partial f(x, t, h_1, h_2)}{\partial x} \; \right|_{x = b} \right|^2 \\[2ex] \mathcal{L}_0 &= \frac{1}{N_0}\sum^{N_0}_{i=1} \left| T_{\infty}(0) - f(x, 0, h_1, h_2) \right|^2 \end{align}\] \[\begin{cases} \frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x^2} = 0, \;\; \alpha = \frac{k}{\rho C_p} \\[2ex] h(T_{\infty}(0)-T_{initial}) = 0 \\[2ex] h(T_{\infty}(t)-T_{boundary}) = k \left. \frac{\partial T}{\partial x} \right|_{boundary} \end{cases}\]